Binding to cellular receptors results in increased iron release from transferrin at mildly acidic pH.
نویسندگان
چکیده
In order to better understand the cellular delivery of iron from serum transferrin (Tf), we compared iron release from receptor-bound and free Tf. While free Tf did not release all iron until below pH 4.6, receptor-bound Tf released significantly more iron at mildly acidic pH, with essentially all iron released between pH 5.6 and 6.0. Since Tf is acidified to a minimum pH of 5.4 in K562 cells, this result accounts for the nearly complete extraction of iron from Tf by these cells. Comparison of fluorescence from Tf conjugated with lissamine rhodamine sulfonyl chloride (LRSC-Tf) free in solution and bound to receptor provides further evidence that the Tf receptor modulates low pH-mediated conformational changes in Tf. As pH was decreased from neutrality, the fluorescence of free LRSC-Tf began to increase below pH 6.2; the fluorescence of LRSC-Tf bound to human receptors did not increase until below pH 5.6. Binding to the Tf receptor, while facilitating iron release from Tf, appears to partially inhibit a conformational change that causes the increase in LRSC-Tf fluorescence at low pH. The fluorescence of human LRSC-Tf bound to murine receptors increases at a higher pH, 6.0, indicating that there are differences in conformational stabilization of Tf by receptors of different species. The results suggest that the Tf receptor, in addition to providing a means by which cells may internalize Tf, functions to increase the release of iron from Tf in the endosome.
منابع مشابه
Study of the Binding of Iron and Indium to Human Serum Apo-Transferrin
Indium is a heavy metal belonging to group IIIa. It is believed that indium may interfere with iron metabolism from the sites of absorption, transportation, utilization and storage in the cells. The present investigation was established to study and compare the binding of iron and indium to human apo-transferrin (apo-tf). Pure human apo-tf was used and the binding activity of iron and indium, a...
متن کاملManganese and Iron Binding to Human Transferrin
The characteristics of manganese and iron binding to human apotransferrin (apo-tf) have been investigated and compared in this study. Both metal ions were taken up by human apo-tf and formed complexes, with the maximum absorbances observed at 410 and 340 nm for manganese-transferrin (Mn-tf) and 465 nm for iron-transferrin (Fe-tf). Addition of manganese (1.5 µg/ml) to the reaction mixture contai...
متن کاملThe chloride effect is related to anion binding in determining the rate of iron release from the human transferrin N-lobe.
The major function of human transferrin is to deliver iron from the bloodstream to actively dividing cells. Upon iron release, the protein changes its conformation from 'closed' to 'open'. Extensive studies in vitro indicate that iron release from transferrin is very complex and involves many factors, including pH, the chelator used, an anion effect, temperature, receptor binding and intra-lobe...
متن کاملManganese and Iron Binding to Human Transferrin
The characteristics of manganese and iron binding to human apotransferrin (apo-tf) have been investigated and compared in this study. Both metal ions were taken up by human apo-tf and formed complexes, with the maximum absorbances observed at 410 and 340 nm for manganese-transferrin (Mn-tf) and 465 nm for iron-transferrin (Fe-tf). Addition of manganese (1.5 µg/ml) to the reaction mixture contai...
متن کاملFerrous iron release from transferrin by human neutrophil-derived superoxide anion: effect of pH and iron saturation.
The ability of superoxide anion (O2-) from stimulated human neutrophils (PMNs) to release ferrous iron (Fe2+) from transferrin was assessed. At pH 7.4, unstimulated PMNs released minimal amounts of O2- and failed to facilitate the release of Fe2+ from holosaturated transferrin. In contrast, incubation of phorbol myristate acetate (PMA)-stimulated PMNs with holosaturated transferrin at pH 7.4 en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 266 13 شماره
صفحات -
تاریخ انتشار 1991